
Playing with Parameters
Part 1: Prepare to build the project

1. To model a system, you first need to discover some things about the system. One of the most

common types of ecological models is a predator-prey model. This is a model of a system of two
animals, where the predator animals eat the prey animals. The basic questions you should ask

when making a predator-prey model are listed below:

a. Which species is the predator?
b. Which species is the prey?
c. What does the prey eat?
d. How much food does each species need to survive?

2. For the dinosaur ecosystem, we will simplify things a little bit. Even though this will make the

simulation less realistic, it will make it easier for you to learn the basics of programming models
and simulations. Here is the information about the basic dinosaur ecosystem model that you

will build for this project:

a. Triceratops eats green leafy bushes.
b. T-Rex is the predator that eats Triceratops as its prey.
c. All dinosaurs spawn a new dinosaur after consuming enough energy from food.

d. When one of the species of dinosaurs runs out of food, the simulation ends.

3. Open Tynker on your device.

4. Create a new blank project.

5. Delete the blue default actor.

6. Rename the project to “P4 DinoEco” plus your initials; for example, “P4 DinoEco AB”.

7. Add the T-Rex actor from the Adventure category.

8. Add the Triceratops actor from the Adventure category.

9. Add a bush of your choice from the Adventure category.

10. Resize and rename the actors in the Properties window.

a. t-rex, scale = 20
b. triceratops, scale = 15
c. bush, scale = 100

11. Give your stage a background scene. (stage → properties → add scene)

12. Set your Tynker project aside and continue to Part Two to explore the problem in more detail.

Part 2: Use the steps of the Design Process to create a dinosaur

ecosystem simulation

Like other scientists, computer scientists use a design process to create solutions. The design

process has five major steps. You will follow these steps as you work on your project.
• Ask: What is the problem?

• Explore: What are ways to solve the problem?
• Model: Create a solution for the problem.
• Evaluate: Test to see if the solution works.

• Explain: Talk about how and why your solution works.
13. Ask

Think about answers to the following questions. Or, if you’ve printed these directions, write the

answers next to the questions.

a. What is the problem that needs to be solved?
b. What are the agents in this system?
c. What are the parameters?

14. Explore

This is the step where you explore options for building your ecosystem model and simulation.

Brainstorm and write your ideas down.

d. What are the requirements? Break the requirements down into small statements. Answer
each question below.

• When the program starts, what initial values do you need to know? Think about the
parameters of the simulation.

• What events happen in the simulation?
e. Sketch the basic parts of the program using pictures, diagrams, and/or pseudocode. A

launch log page may be downloaded and used. *See the blog.
Use the ideas from your notes from the step above and look at the list below for ideas that
you may not have considered. For now, just write them down. You will begin
programming in the next step.
• Make variables to hold initial values and to track values as they change during the

simulation.
• Create the correct number of t-rexes, triceratops, and bushes based on the values

specified in the parameters.
• What happens when a t-rex and a triceratops touch each other? The t-rex gains energy

and the triceratops dies.
• What happens when a triceratops touches a bush? The triceratops gains energy and

the bush disappears.
• When a dinosaur’s energy is equal to the energy required to spawn, create a new clone

and reset the dinosaur’s energy to 0.
• Check the number of food sources (triceratops and bushes). If either is equal to zero,

end the simulation and display the time and final number of each actor.

15. Model

a. This is the step where you start building your program. The steps below will help

you to break the program down and will give you information you need to know to

successfully build the simulation.

b. Make variables to hold initial values of the parameters and to track values as they
change during the simulation. Choose short, meaningful names for the variables.

• Refer back to our last activity if you need a reminder about how to create new
variables. Create the following global variables in the stage’s code area.
(Functions category, red)

• number of t-rex dinosaurs
• number of triceratops dinosaurs
• number of bushes
• t-rex spawn energy
• triceratops spawn energy

c. Variables start out as 0. The when num bushes=0 or num tritops = 0 event triggers

when the value of one of those variables falls to 0. To prevent this we set all the
variables to -1 on start. If variables started out at 0 then this event would trigger as

soon as the program started and that would be a bug!

d. When the simulation starts, ask the user to enter starting values for the initial

number of t-rexes, number of triceratops, number of bushes, energy for t-rexes to

spawn, and energy for triceratops to spawn. Set this code up in the stage’s code

area.

e. Set up all of the actors: t-rex, triceratops, bushes.

• Think back to the dodgeball tilt game when you created more than one ball by
creating clones. In this project you need to make many dinosaurs and bushes. It

would be difficult to make a new actor for every agent in this simulation.
Cloning is essential in modeling and simulation because it allows you to
program a single agent and then copy that agent as many times as necessary.

• For now just create the clones for each agent. You will program the agents in the
next step.

• The example code that follows uses three repeat loops to set up the clones for
each type of agent. Where did the variables num bushes, num tritops, and num
trex come from? Do not proceed until you understand why this code works.

The repeat block and the create clone block are in the Control/Flow category (orange).
Variables are in the Function category (red). Your names may be different than the example.

f. Test your code. Your program should ask the user for the initial parameters. Then
what happens? Do you see any clones on the screen? No! That’s expected because
you have not yet programmed the clone start event for each actor.

g. Program each actor’s clone startup script.

• You must hide the original actor and put a show block in the clone startup script.
This will make it easier to create the right number of clones for each actor. The
clones do not run the on start script. They start off hidden because they inherit
the hidden property from the original actor. That is why you have to
use show during clone startup.

Use hide and show for all three types of clones

h. Make the t-rex and triceratops clones start at a random location on the screen and
then move around randomly. Hint: Refer to the tilt game to see how you made the

kid actor move randomly on the screen.
i. Position the bushes all around the screen. Remember that they should not move!

Hint: Bushes only need the first part of the clone startup script that the two types of
dinosaurs have. Refer back to the code for the treasure chest in the tilt game for
more help.

j. Test your code. Your program should ask the parameter questions and then create
the correct number of dinosaurs and bushes. Dinosaurs should move randomly

while bushes stay still.
k. Program the dinosaurs to keep track of their own energy.

o Set up a local variable for the t-rex actor. You may name the variable
whatever you like. Use a name that indicates what the variable represents,
such as t-rex-energy.

o Set up a local variable in the triceratops actor. Name the variable
something that indicates what it
represents, such as tritops-energy.

o Remember to initialize these local
energy variables to 0 in the
dinosaur clone startup code. The image
to the right gives an example of how to
set up an energy variable. Do not check
Global Variable.

• In this example, the original actor has a local variable called my energy. Therefore,

each clone of the actor will have its own my energy variable.
l. Program the events for actors touching each other.

• When a triceratops touches a bush, the triceratops’s energy increases by 1 and
the bush disappears.

• When a t-rex touches a triceratops, the t-rex’s energy increases by 1 and the
triceratops disappears.

• Remember to update the variables that keep track of the number of each type of
actor. (num bushes and num tritops in the example)

• To get these behaviors to work correctly you will need to use send message to
actor and when I receive message. These blocks allow the clones to talk to one
another. See the hint in the picture below.

Sending and Receiving Messages

• Look closely at how the bush tells the triceratops that they have
touched. Use this to help you figure out how the triceratops should tell
the t-rex that they have touched. Which actor should disappear? Which
actor should increase its energy?

• Remember to use touching clone of t-rex and not touching t-rex.

• In this example the message is named “increase energy,” but you may
use any name you like. It is OK to leave the with space blank on the send
message block.

• Clones run all of the scripts in the actor that cloned them, except for
the on start script (because they run clone startup instead). That means
that if you put a script in t-rex’s program area, all t-rex clones will run
that code as well.

m. Test your code. Your program should ask the parameter questions and then create
the correct number of t-rex clones, triceratops clones, and bush clones. When a t-
rex bumps into a triceratops the triceratops should disappear. When a triceratops

bumps into a bush, the bush should disappear.

• Remember that it’s normal to go through cycles of testing and fixing when
you are writing a program. If anything is not working correctly be
persistent until you have fixed the bug!

n. Program the t-rex clones to reproduce when their own my energy reaches the t-

rex spawn energy parameter. A hint about the blocks you will need is provided
below. Fill in the blank spaces. Remember to reset my energy to 0 after spawning
so that the dinosaur can work its way up to spawning again.

o. Program the triceratops clones to reproduce when their energy reaches the

triceratops spawn energy parameter. The code will look very similar to the code

that you just wrote to make the t-rex spawn except that you will put it in the clone
startup script for the triceratops actor and not the t-rex actor.

p. Test your code. Your program should ask the parameter questions and create the

clones. When a t-rex bumps into a triceratops the triceratops should disappear.
When a triceratops bumps into a bush, the bush should disappear. New t-rex

clones and new triceratops clones should be popping up every now and then
whenever one of the dinosaurs has earned enough energy to spawn. Hint:

Remember that the say block is useful for displaying the current value of a variable.
You can use it to see what is happening while the program runs.

q. End the simulation when one of the food sources runs out. Add a when true

occurs event to the stage’s script that is triggered when the food source for either
dinosaur runs out.

• What is the condition you want to watch? What should happen when that
condition becomes true? Use the hint that follows to help you program the

ending condition for the simulation. Fill in the blank spaces in the when
true occurs block.

• Fill in the when true block to detect the condition of either the number of

bushes or the number of triceratops reaching zero. To detect either one
condition or another, use a true or true block.

• The stop [all] block when changed to stop [this script] will stop the text from
appearing more than once. Be sure to update the data and draw the text
showing the final data before stopping the program.

• When true and stop blocks are in the Control/Flow category
(orange). Draw, set font, and set pen blocks are in the Drawing category (dark

green). Join, or, and = blocks are in the Math category (light green).

• The example above shows a timer block in the draw text block. Use
the timer variable block later in the program to find out how long the
program has been running. You must initialize the timer when the program

starts by putting a reset timer block in the stage’s on start script. Timer
blocks are in the Sensing category (light blue).

• You should also put a clear block in the beginning of the stage’s on
start script to clear away any text that is still there from a previous

simulation.

r. Test your code. Your program should ask the parameter questions and create the

clones. When a t-rex bumps into a triceratops the triceratops should disappear.

When a triceratops bumps into a bush, the bush should disappear. New t-rex

clones and new triceratops clones should be popping up every now and then

whenever one of the dinosaurs has earned enough energy to spawn. When there

are no more bushes or no more triceratops, your program should display the data

from the simulation and end the program.

16. Evaluate

a. Test your code very regularly as you build your program so that it is easier to

isolate and fix any issues (also known as bugs) in the code. Waiting until the
program is completed to test the code could make it confusing and difficult to fix

any problems. Remember, finding bugs and fixing them is known as debugging in
computer programming.

b. It is normal and expected that programs may not work exactly as intended at first.

Be patient and make sure to iterate between programming and testing as many
times as needed.

c. A good way to know whether your variables are updating correctly is to display
them on the screen using the say block. For example, if you want to know an
actor’s energy, you could put “say (my energy)” inside the actor’s forever loop.

d. If you see that recent changes you made to your program are not showing up when
you test (especially when it comes to variables), it is always good to go back to the

My Projects screen and reload your project. Sometimes the Tynker app gets hung
up on something and needs a fresh start to get back to working correctly. Simply

go back to the My Projects screen by clicking the blue arrow in the upper-left
corner. Then go back into your project.

e. When your Dinosaur Ecosystem simulation is working according to all of the
requirements, you can use any extra time you have to improve your project. Here

are some ideas that you might like to implement if you have extra time.

• Display the t-rex and triceratops numbers on the screen while the simulation
is running, like you did with the game score in the dodgeball game.

• Add sounds (to the actor’s properties) and play a sound when the actors
bump into each other.

• Keep track of how long a dinosaur has been alive and make it die after a
certain amount of time. Could you make this lifespan a parameter in the
simulation?

17. Explain

a. If possible, share your simulation with another student virtually and explain your

code.
b. Have them share their program with you as well.

c. Discuss a few issues that you or the other group encountered and how you solved
them.

d. As part of explaining your project, you should be able to demonstrate how it can be

used to understand the dynamics of the dinosaur ecosystem you have modeled.
Run simulations with several different parameters and record your observations.

Set up a chart like this and use it to record your simulations. Be sure to change
parameters as you test, but don’t change too many parameters at once. Changing
one or two parameters in each simulation can help you understand the cause and

effect going on inside the system.

